Course Overview
Learn to boost productivity at every step of the ML lifecycle with Amazon SageMaker Studio for Data Scientists from an expert AWS instructor. The three-day, advanced level course helps experienced data scientists build, train, and deploy ML models for any use case with fully managed infrastructure, tools, and workflows to reduce training time from hours to minutes with optimized infrastructure. This course includes presentations, demonstrations, discussions, labs, and at the end of the course, you’ll practice building an end-to-end tabular data ML project using SageMaker Studio and the SageMaker Python SDK.
Course Content
- Amazon SageMaker Setup and Navigation
- Data Processing
- Model Development
- Deployment and Inference
- Monitoring
- Managing SageMaker Studio Resources and Updates
- Capstone
Who should attend
- Experienced data scientists who are proficient in ML and deep learning fundamentals.
- Relevant experience includes using ML frameworks, Python programming, and the process of building, training, tuning, and deploying models.
Prerequisites
We recommend that all students complete the following AWS course prior to attending this course:
We recommend students who are not experienced data scientists complete the following two courses followed by 1-year on-the-job experience building models prior to taking this course:
- The Machine Learning Pipeline on AWS (ML-PIPE)
- Deep Learning on AWS
Course Objectives
- Accelerate the preparation, building, training, deployment, and monitoring of ML solutions by using Amazon SageMaker Studio
- Use the tools that are part of SageMaker Studio to improve productivity at every step of the ML lifecycle
- And much more
Outline: Amazon SageMaker Studio for Data Scientists (ASSDS)
Module 1: Amazon SageMaker Setup and Navigation
- Launch SageMaker Studio from the AWS Service Catalog.
- Navigate the SageMaker Studio UI.
- Demo 1: SageMaker UI Walkthrough
- Lab 1: Launch SageMaker Studio from AWS Service Catalog
Module 2: Data Processing
- Use Amazon SageMaker Studio to collect, clean, visualize, analyze, and transform data.
- Set up a repeatable process for data processing.
- Use SageMaker to validate that collected data is ML ready.
- Detect bias in collected data and estimate baseline model accuracy.
- Lab 2: Analyze and Prepare Data Using SageMaker Data Wrangler
- Lab 3: Analyze and Prepare Data at Scale Using Amazon EMR
- Lab 4: Data Processing Using SageMaker Processing and the SageMaker Python SDK
- Lab 5: Feature Engineering Using SageMaker Feature Store
Module 3: Model Development
- Use Amazon SageMaker Studio to develop, tune, and evaluate an ML model against business objectives and fairness and explainability best practices.
- Fine-tune ML models using automatic hyperparameter optimization capability.
- Use SageMaker Debugger to surface issues during model development.
- Demo 2: Autopilot
- Lab 6: Track Iterations of Training and Tuning Models Using SageMaker Experiments
- Lab 7: Analyze, Detect, and Set Alerts Using SageMaker Debugger
- Lab 8: Identify Bias Using SageMaker Clarify
Module 4: Deployment and Inference
- Use Model Registry to create a model group; register, view, and manage model versions; modify model approval status; and deploy a model.
- Design and implement a deployment solution that meets inference use case requirements.
- Create, automate, and manage end-to-end ML workflows using Amazon SageMaker Pipelines.
- Lab 9: Inferencing with SageMaker Studio
- Lab 10: Using SageMaker Pipelines and the SageMaker Model Registry with SageMaker Studio
Module 5: Monitoring
- Configure a SageMaker Model Monitor solution to detect issues and initiate alerts for changes in data quality, model quality, bias drift, and feature attribution (explainability) drift.
- Create a monitoring schedule with a predefined interval.
- Demo 3: Model Monitoring
Module 6: Managing SageMaker Studio Resources and Updates
- List resources that accrue charges.
- Recall when to shut down instances.
- Explain how to shut down instances, notebooks, terminals, and kernels.
- Understand the process to update SageMaker Studio.
Capstone
- The Capstone lab will bring together the various capabilities of SageMaker Studio discussed in this course. Students will be given the opportunity to prepare, build, train, and deploy a model using a tabular dataset not seen in earlier labs. Students can choose among basic, intermediate, and advanced versions of the instructions.
- Capstone Lab: Build an End-to-End Tabular Data ML Project Using SageMaker Studio and the SageMaker Python SDK